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Fig. 1. (1) User reads texts naturally. (2) An unobservable “ground truth” exists for eye movements during reading, known
only to the user themselves. (3) The output from the uncalibrated eye-tracking device exhibitsmisalignment with this ground
truth. (4) Our model predicts reading behavior by identifying areas of the text where the user is likely to focus or ignore. (5)
We apply a transformation to the uncalibrated data to minimize the discrepancy between it and the behavior predicted by
our model. (6) The optimal transformation yields the calibrated eye movement data.
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In this paper, we present a novel, unobtrusive calibration method that leverages the association between eye-movement and
text to calibrate eye-tracking devices during natural reading.The calibration process involves an iterative sequence of 3 steps:
(1) matching the points of eye-tracking data with the text grids and boundary grids, (2) computing the weight for each point
pair, and (3) optimizing the calibration parameters that best align point pairs through gradient descent. During this process,
we assume that, from a holistic perspective, the gaze will cover the text area, effectively filling it after sufficient reading.
Meanwhile, on a granular level, the gaze duration is influenced by the semantic and positional features of the text. Therefore,
factors such as the presence of empty space, the positional features of tokens, and the depth of constituency parsing play
important roles in calibration. Our method achieves accuracy error comparable to traditional 7-point mehtod after naturally
reading 3 texts, which takes about 51.75 seconds. Moreover, we analyse the impact of different holistic and granular features
on the calibration results.

CCS Concepts: • Human-centered computing→ Interaction techniques; User interface toolkits.

Additional Key Words and Phrases: Eye Tracker Calibration, Reading Model, Unobtrusive Calibration, Implicit Calibration
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1 Introduction
Eye-tracking devices depend on traditional explicit calibration, a process that minimizes the accuracy error
between output of gaze coordinates and the ground truth of where the user looked. However this process could
notably degrade the user experience [39, 54, 61]. In this approach, users are required to focus on a series of pre-set
points on the screen. The necessity for frequent recalibration amplifies the inconvenience. Although there are
existing unobtrusive calibration techniques, such as those that use saliencymaps generated from various sources,
these methods can suffer from a subjective definition of saliency and imprecise saliency region generation [58],
compromising calibration accuracy.

We introduce CalibRead, a calibration method that is both unobtrusive and accurate. Picture this scenario:
a user connects a new eye tracker to the computer. Without any explicit calibration, the initial accuracy error
is unacceptable. However, the user has a daily habit of reading news. Within just a few minutes of reading,
our method enables the eye tracker to reach accuracy levels comparable to those traditional explicit calibration
methods.

Our approach leverages the association between eyemovement and text to calibrate eye tracking device during
routine reading activities. The effectiveness of reading as a calibration clue is rooted in the basic principle of
eye-tracking calibration: establishing a reliable association between the user’s input signal, such as the angular
position of the pupil center relative to corneal reflection in PCCR (Pupil Center Corneal Reflection) [11, 13, 20],
and the true gaze point on the display screen. Unlike explicit calibration, which imposes stringent constraints
on user behavior, reading provides a more natural and less intrusive form of guidance. The textual content itself,
being small and surrounded by white empty space, naturally constrains our eye movement, enabling higher
precision.
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The target of our approach is to identify the affine transformation matrix which, when applied to
the raw gaze coordinates from eye-tracking device, minimizes the accuracy error between the trans-
formed gaze coordinates and the ground truth of where the user looked. To implement our approach,
two key research questions (RQs) were identified:

RQ1: What are the characteristics of eye movements during reading, and which can be used for calibration?
RQ2: How to build an effective calibration algorithm based on these characteristics, and how well does it

perform?
To address RQ1, we carried out a user study to collect eye movement data during natural reading. We also

interviewed participants to share insights on their reading behaviors especially those noticeable patterns we
observed, such as why did they focus on or neglect certain words. Our observation revealed that: (1) Empty
space acts as boundary, which significantly shaped the distribution of gaze. (2)The distribution of gaze is spatially
uneven. Readers tend to pay more attention on the top-left corner and less attention on bottom-right corner. (3)
Readers tend to pay much less attention on punctuations. (4) Gaze duration on each text grid (Chinese character)
within a sentence was influenced by positional, semantic and syntactic features. Details are in Section 3.

For RQ2, we adapted ICP (iterative closet point) algorithm [6] using the findings of user study. Similar to the
original ICP algorithm, we first match gaze points with the center points of text grid or boundary grid based
on their proximity in space, resulting in multiple pairs of points. Next, we will compute a weight for each point
pair according to the features of the Chinese character in the text grid or the location of the boundary grid.
Subsequently, we employ gradient descent to determine the optimal affine transformation matrix. This matrix,
when applied to gaze points and repositions them, minimizes the weighted distance between corresponding
point pairs. Details are in Section 4.

We evaluate our method using an eye tracker with an inherent accuracy error of 0.20◦(15.62 px). Each text
in our experiment consists of less than 180 Chinese characters, and the average reading time for each text is
17.25 seconds. Before calibreation, the accuracy error is 1.21◦(93.76 px). Results show that after reading 3 texts
(about 51.75 seconds), ourmethod’s accuracy error does not significant differ from the traditional 7-pointmethod;
after reading 11 (about 189.75 seconds) or more texts, our method exhibits significantly lower accuracy errors.
Upon reading 22 texts (about 379.5 seconds), our method achieves a minimum accuracy error of 0.29◦(22.32 px),
outperforming the 7-point accuracy error of 0.39◦(29.75 px) by 24.9 %. Details are in Section 5.

Further evaluations reveal that boundary grids significantly enhance calibration, as users tend not to look at
the beginning and end of each row, thus providing effective constraints. Additionally, granular features related
to tokens, such as the length of the token a Chinese character belongs to and the character’s position within the
token, are much more influential to the calibration result than others.

Our contributions are as follows:
(1) We proposed an implicit calibration method using natural reading.
(2) Our method achieves lower accuracy error while being unobtrusive to users.
(3) We evaluated different holistic and granular features to determine their impact on calibration result.
The rest chapters include related works (Section 2), limitations and future work (Section 6), and conclusion

(Section 7).

2 Related Works

2.1 Explicit Eye-Gaze Calibration
Calibration is a necessary step in eye gaze tracking. Based on the anatomy eye model, the 9-point calibration
[12, 38] is well-known and widely used in eye trackers. The model can be constructed using cameras (RGB
[28, 60, 64], infrared [30, 34] or depth [19]), eye trackers (Tobii [1], etc.) and head-mounted devices (VR headset,
etc). Users are required to fix the gaze at several targets (usually organized 3 by 3 or 4 by 4) to finish the calibration.
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However, this calibrationmethod is only based on fixed-position targets, resulting in a tedious calibration process
and optimizable accuracy.

Beyond the traditional stationary calibration targets, pursuit methods offer an alternative for achieving more
efficient and accurate eye tracking by requiring users to follow a moving object. Drewes et al. [16] proposed
a pursuit-based method with circular trajectories, achieving the best result with an accuracy of 19 px (0.38◦).
Similar designs like different target trajectories [47], different targets [41, 48], and combinations of the two [33]
are also developed. Game-like calibrations [18, 52] have also been explored to reduce boredom.

Although these methods improve the interest and accuracy of calibration, they still require users to complete
the calibration during the interaction process actively. Explicit method causes inconsistency and inadequate
scalability due to differences in equipment [65]. It also interferes with the user’s interaction process, causing
discontinuity and inconvenience. Therefore, we hope to integrate the calibration process into the user’s interac-
tion process in an implicit way, maintaining the coherence of the interaction while ensuring the accuracy and
effectiveness of the calibration.

2.2 Implicit Calibration
Implicit calibration methods are steps that adjust and optimize gaze estimators during the usage of the devices.
Previous work has explored implicit calibration during interactions with saliency maps, which shows that the
method and accuracy are affected by the content the user sees. Sugano et al. [58] provides a calibration algorithm
using visual saliency in video clips. The algorithm extracts six features to build saliency maps. Kasprowski et al.
[32] employs multiple saliency map models to extract probable fixation targets across multiple screens. Hiroe
et al. [25] also uses multiple saliency map models and further applies two filters, velocity and fixation, to process
valid eyemovement data.Wang et al. [62] uses a regression based deep convolutional neural network to generate
image features, thus approximates eye fixation distribution. Asghari et al. [2] asks expert to assign specific
area of interest (AOI) within the image as saliency. Besides video clips and images, there are other sources to
generate saliency maps, including mouse-click behaviors in desktop scenario [59], everyday user interactions
(clicking, dragging, typing, etc.) [26], mobile phone usages [40] and head-mounted devices [57]. A probabilistic
and incremental algorithm [7] is also set to fit visual saliency.

Implicit calibration relies on the user’s eye movement patterns and behavior when paying attention to content.
Text is also an important component in user interactions and has been explored in explicit calibration [33].
Khamis et al. [33] introduced a calibration method similar to pursuit [16] by partially displaying text, prompting
readers to follow and read the “partially displayed” content. However, there is a lack of research on leveraging
natural reading behavior for eye-tracking calibration, and the special patterns and features of reading behavior
remained unexplored in implicit calibration. We hope to fill this gap by understanding reading behavior and
achieving implicit calibration of eye movements.

2.3 Eye Movement Behavior While Reading
Reading has been wildly explored in the past decades in the field of cognitive psychology. An overview of eye
movements was discussed, including fixations, saccades, visual acuity, etc.[50]. Based on the cognitive identifica-
tions of eye movements, many models were proposed to explain why fixations occur for certain words and why
they take a certain time. A dynamic model, SWIFT(Saccade-generation with inhibition by foveal targets) [17],
was proposed to predict eye movement events. E-Z Reader [51], accounted for the eye movement control com-
prehensively. Reading behavior in different languages has also been explored. Apart from letter-based reading,
there are several findings working on Chinese characters. Li et al. [36] established an integrated computational
model for Chinese reading, providing methods for Chinese word processing, eye movement control, and visual
processing.
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(a) User Setup (b) Grid Layout in Screen

Fig. 2. Experiment Setup

Based on the rich features during reading, previous work has achieved prediction of fixations and saccades[14,
21, 22, 42, 63]. The language model also provides a reference for eye movement prediction. BERT [15] is utilized
for word embeddings. Bensemann et al. [5] found a strong correlation between human eye movements and
early layers of pre-trained transformers.The relationship between eyemovements and reading behavior provides
assurance for calibration. However, which features can be used for implicit calibration have not been explored. In
this paper, we focus on extracting key reading behavior features and building a reading-based implicit calibration
method.

3 User Study 1: Understanding Reading Behavior
The purpose of this user study is two-fold. First, we seek to identify specific features of user’s reading behavior
through eye-tracking data and interviews. Second, we aim to develop an algorithm capable of leveraging features
for effective calibration. We hope the insights gained from this could also offer valuable perspectives for future
research.

3.1 Apparatus
The study was conducted on a 24-inch 1920 px × 1200 px 52.0 cm × 32.7 cm monitor where participants read
multiple texts that we prepared. Texts are displayed in a 6 × 30 grid layout (check Figure 2b), allowing for
Chinese, punctuation, Arabic numbers, and alphabets. Each grid is 40 px in width and 64 px in height. A keyboard
is prepared for participants to conduct operations during reading. Eye movements were recorded using a Tobii
Eye Tracker 5, which ismounted at the bottomof the computer screen. Initial calibrationwas conducted using the
eye tracker’s built-in calibration.We captured the entire experiment on video using a camera and simultaneously
recorded the monitor’s display.

3.2 Procedure and Participants
We recruited 24 participants (16 males and 8 females, aged from 19 to 33, 𝑀𝑒𝑎𝑛 = 23.81, 𝑆𝐷 = 4.13). We offered
a compensation of $15 USD per hour.

Participants were asked to sit 60 cm in front of the computer and maintain a comfortable posture (Figure 2a).
Before the experiment begins, we will calibrate the eye tracker using its built-in calibration program. Experi-
ments were conducted in multiple rounds, each consisting of three phases: reading multiple texts, interview,
and manual calibration.
Reading Phase. Participants read the text displayed on the screen naturally and navigated to the next text

using the ‘page down’ key.
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(a) Calibration success: (1) The participant begins by gazing on the grid center. (2) The dot at the center gradually turns red.
(3) If the participant’s gaze remains within the boundary for 1 second, manual calibration is completed.

(b) Calibration fail: (4) The participant begins by gazing at the grid center. (5) However, the gaze exceeds the boundary
within 1 second. (6) Manual calibration will be stopped and restarted.

Fig. 3. Manual Calibration Process

Interview Phase. After each participant finished reading a text, we inquired about the elements that left an
impression on him/her. Subsequently, we visualized the gaze points of last text, and ask them to explain their
own eye-movements. For example, we posed questions such as “why do you spend extra time on this Chinese
character? does it reminds you of anything”, “you read that part slowly, could you recall what you were thinking
about at that time?”. During the pilot study, we noticed that some participants read each Chinese character one
after another, trying to remember every detail in anticipation of the interview. Therefore, we advise participants
against adopting this approach during the current session.

Manual Calibration Phase. This process emulated the explicit calibration method, obtaining the center
points of 180 grids on the screen along with the eye movement data when users fixated on these centers. At the
end of each round, participants were instructed to fixate on a black dot at the center of several randomly selected
grids. As they fixate, the dot’s color will gradually turn to red (Figure 3a). Concurrently, we monitored the eye
movement trajectory, setting a 40 × 64 rectangle as a boundary. If eye movements exceeded this boundary,
calibration for that specific point would have to be restarted (Figure 3b). We collected both the fixation gaze
coordinates output from eye tracker (marked as 𝐶 in Section 4) and the coordinates of the corresponding grid
center (marked as 𝑇 in Section 4). After all rounds were completed, each grid in the layout would have been
fixated at least once, which gives 6 × 30 = 180 coordinate pairs (point pairs) in total. These data is further used
to correct the inherent error of the eye tracker.
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3.3 Eye Movement Data Process
Due to the inherent measurement error in the eye tracker, some eye movement data from Reading Phase is
misaligned with the text, resulting in an overall offset. To address this issue, we use data from the Manual Cal-
ibration Phase to calibrate the eye movement data from the Reading Phase. Specifically, we derive an affine
matrix (marked as𝐴 in Section 4), from the 180 point pairs collected during theManual Calibration Phase us-
ing the least squares method. When applied to the fixation gaze coordinates in theManual Calibration Phase,
this matrix minimizes the distance between the transferred fixation gaze coordinates and their corresponding
grid center coordinates. Applying the same matrix to the eye movement data from theReading Phase produces
calibrated data, and all subsequent experimental analyses were based on these calibrated results.

3.4 Result
The results can be classified into two themes: a broad, holistic perspective that captures patterns between extensive
eye movement data and the position of text, and a more detailed, granular level view focusing on specific rules
within in a sentence.

Fig. 4. Overlay of all eye movement traces shows: (1) more gaze on left-top corner and less on bottom-right corner, (2) first
and last characters, marked in red, are often ignored, (3) rows are distinguishable.

3.4.1 Holistic Perspective

Generally speaking, the gaze point would encompass the text area, effectively filling it after sufficient area, as
shown in (Figure 4).
Top-Left Corner and Bottom-Right Corner. Specifically, participants tend to pay more attention on the left-
top area, and less attention on the right-down area. This is because the reading direction of Chinese is from left
to right, top to bottom. Therefore the top-left corner often contains the titles or key information. Our interviews
proved that participants would pay attention to the first line, regardless of whether they engage deeply with the
entire content. Subject W mentioned:

“Within the first half-sentence of the first line, I generally understand the main topic of the article. By
the end of the first line, I knew whether the article interested me. If not, I might give a brief scan a bit
more and skip ahead.”

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 4, Article 154. Publication date: December 2024.
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(a) Blink: the participants blinked at the start of
the second row.

(b) Backtrack: After reading the last line, the par-
ticipants backtracks to the first line.

(c) Continuous Switch: After reading the short
first row, participants’ gaze move the the second
row continuously.

(d) Skim: the participants skim through the third
row and fifth row.

Fig. 5. Four Cases of Gaze Crossing the Row. Points in the image indicate the participants’ gaze. The darker the color, the
later the point appears in the sequence.

On contrary, the bottom-right corner tends to be unattended. This could be attributed to 2 reasons. First,
participants often do not finish thewhole text.They have already grasped themeaning of the text before reaching
the end, stopping somewhere in the middle. Second, the concluding position varies between articles. For those
articles end in the middle, participants will never look the right-down corner.
Vacant on Start and End of Each Row. We found that participants’ eye movements do not start from the
first character and also do not stop at the last character. There is usually a gap on both ends (Figure 4). After
summarizing the interview findings, we believe there are two possible reasons for this: (1) Participants may skip
content at the beginning or end of a line because it can be easily inferred from the preceding content (e.g., a
word that is split); (2) When reading from left to right, the peripheral vision captures content at the end of the
line; similarly when shifting from right to left to read the next line, the peripheral vision captures content at the
beginning of the next line.
Rows andColumns. In (Figure 4), a noticeable pattern emerges as we distinctly observe differentiation between
rows in the point cloud data of gaze. It is evident that the gaze is predominantly centered within each row, with
limited spillover into adjacent rows during reading. However, the boundaries between rows occasionally blur.
This phenomenon can be attributed to 4 possible factors: first, blinks result in abrupt drops across rows (Figure
5a); second, participants may backtrack to revisit previous content (Figure 5b); third, the gaze trace exhibits
continuity between rows when participants seamlessly transition from one short row to the next (Figure 5c);
forth, when participants are skimming the content, their speed tends to slow down as they switch from the end
of one line to the beginning of the next line, resulting in more gaze trajectories across rows (Figure 5d).

Conversely, distinguishing columns proves to be challenging, evenwhenwe use a standard unit to encapsulate
each Chinese character. This difficulty arises due to varying reading strategies employed for different texts.
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(a) Examples of a noticeable decrease in gaze du-
ration due to punctuation. Peaks of gaze duration
are frequently observed for shorter sentences unit
separated by punctuation.

(b) Another examples for decrease due to punctu-
ation.

(c) Examples for long duration on punctuation.
Due to the parallel nature of the descriptions be-
fore and after the sentence, participants treated
them as a cohesive unit here; as a result, the gaze
duration at punctuation did not decrease.

(d) Examples for long sentence without separator.
Gaze duration does not exhibit distinct features
in such situations.

Fig. 6. Four examples of gaze duration in different texts. The green “x” marker in the figure represent gaze duration data
from different participants, and the green lines connect the average values.The bottom of each figure displays the Chinese
characters of this sentence and its English translation.

3.4.2 Granular Level

As observed in Figure 6a and 6b, in most cases, within a row, there is a noticeable decrease in gaze duration
at punctuation marks or spaces. Moreover, within each set of sentences separated by punctuation, for sentences
with around 7 Chinese characters, gaze duration tends to be longer towards the center and shorter towards the
edges.

However, for sentences with a larger number of Chinese characters (Figure 6d), it becomes more challenging
to discern patterns in gaze duration. We believe this is because in shorter sentences, participants’ attention
strategies are more closely associated with structural features of the sentence (such as its position, length, and
the position of certain Chinese character within it). In longer sentences, participants’ attention strategies may
be more strongly linked to the actual semantic content of the sentence. This could result in significant variations
due to various participant-specific factors such as prior knowledge, familiarity, etc. We will provide a brief
elaboration on this issue based on our interview results in Section 3.5.

In a few cases (Figure 6c), gaze duration remains relatively stable. Three possible explanations account for this
phenomenon:
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(1) Close Relationship between Adjacent Contents. The adjacent content is of close semantic connection
or a parallel relationship. Therefore participants will pay extra attention on the following element after
finishing the preceding ones.

(2) Complex Content. When the text is difficult to understand, participants tend to slow down their reading
speed. This often results in longer gaze duration on punctuation marks. For example, when we asked
Subject J about her linger on punctuation marks, she stated, “I didn’t intentionally stop there; I was probably
just processing the preceding content.”

(3) Peripheral Attention. Sometimes, participants focus on punctuation marks because their peripheral vi-
sion has already caught the text that follows. In other words, the participant starts to process the text
following the punctuation while their gaze remains on the punctuation itself. Like subject H mentioned
in the interview, “I didn’t intentionally look at the punctuation, but I remember paying special attention to
the word that followed.”

It’s worth noting that even when participants report having a strong impression of certain key information,
the time they actually spend looking at it can be surprisingly brief. During the interviews, participants often
expressed surprise at this, saying, “I definitely remember that word, but why was my gaze so brief?” One possible
explanation for this phenomenon could be the semantic “priming” [3] provided by the text leading up to that
particular keyword.The text might have laid sufficient groundwork to guide the participant’s thoughts, enabling
them to anticipate what’s coming next. As a result, when they actually encounter the keyword, it doesn’t require
much additional cognitive effort or attention to process it.

3.5 Explanation about the Gaze Duration Variation
While analyzing the experimental data, we noticed that, despite the features influencing gaze duration men-
tioned earlier, there is often significant variance in gaze duration among different participants for the same
sentence. We conducted further interviews to better understand the attention allocation strategies employed
by participants during the reading process and summarized 4 factors: personal preferences, prior knowledge,
reading abilities,and linguistic habits. We anticipate that this aspect of our study may offer valuable insights for
future research.

(1) Personal preference. The degree to which participants engage with a text strongly correlates with how
well the content alignswith their personal preferences.When the text does not appeal to them, participants
tend to skim quickly through the content. Conversely, they read carefully line by line.
Beyond behavioral patterns (focused reading or skimming), preferences also dictate the focus of attention.
For instance, when reading the same restaurant review, Subject L stated, “I’m more concerned about the
ambiance and the service,” while Subject J noted, “I only care about how the food tastes and whether the
ingredients are fresh.” Similarly, when reading a sports news article, Subject H said, “I like this athlete and
focused solely on parts related to him, probably overlooking sections about his competitors,” whereas Subject
J indicated, “I paid attention to information related to both sides”

(2) Prior knowledge. It refers to a participant’s familiarity with the information described in the text. This
aspect is particularly salient when reading news articles. When presented with a news story, users who
have not previously encountered related news will focus on details such as the time, location, individuals
involved, and specific events. In contrast, those who are already familiar with the news subject will look
for new insights they haven’t encountered before, such as analyses of the ongoing impact of the event.
The phenomenon extends to product reviews as well. For instance, when we presented a makeup product
review to a subject highly knowledgeable about cosmetics, she remarked, “I can almost guess what the
product is just by seeing the first few letters of its long, specific name. Given the context, only certain types of
products from that brand are usually mentioned.”
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(3) Reading abilities and habits. It refers to how well a participant can adapt to the “difficulty” level of the
text. Generally, participants will spend more time focusing on more complex parts of the text and will
quickly scan through simpler, more predictable parts. Observation leads us to believe that the ability to
read complex content is also closely related to a participant’s reading habits.
For instance, in our study, Subject J spent a significantly longer time reading almost all types of texts,
essentially reading them word-for-word. The only exception was user reviews. During the interview, she
mentioned that she primarily reads user reviews in her daily life and, therefore, knows the typical infor-
mation conveyed in such texts.This leads to an important insight: frequent exposure to a particular type of
text allows the user to build specific expectations about the information conveyed and how it’s presented,
making even complex, high-difficulty texts easier to understand.

(4) Linguistic preferences.One Subject, M, who is from a linguistics background, noted during the interview
that she chooses what to read based on the composition and meaning of the words. “I pay more attention
to verbs that have a tangible meaning, such as ‘escape’, ‘fly’, or ‘die’,” she said. “On the other hand, I tend to
overlook verbs whose meaning is largely dependent on subsequent objects, like ‘hold’, as in ‘hold a ceremony’
or ‘hold a cup’. The verb itself doesn’t convey much; the critical information lies in what follows.”
This insight suggests that the syntactic and semantic structure of the text can have an impact on reading
behavior. Words or grammatical structures that efficiently convey information may naturally attract more
attention.

3.6 Strategies for Features
For the holistic features outlined in Section 3.4.1, we add extra boundary grids surrounding the text area to con-
strain gaze points during calibration. Details can be found in Section 4.2. Concerning the granual level features
mentioned in Section 3.4.2, we developed a simple neural network to predict the gaze duration for each Chinese
character. This neural network takes into account various features, including the character’s position, the length
of the Chinese word it belongs to, the length of the sentence it is part of, the semantic embedding from GPT
of the Chinese word it belongs to, and the semantic embedding from GPT of the sentence. The resulting vector
serves as input for the prediction of gaze duration. The predicted gaze duration, after processing, is utilized in
point matching and gradient descent. Further details can be found in Section 4.5.

4 Method
Based on the reading behavior analysis presented in the previous chapter, we introduce CalibRead. The model
takes both the uncalibrated eye movement data from the eye tracker and the text, as well as the locations of the
center of each Chinese character as input. It then outputs an affine matrix 𝐴 that transforms the uncalibrated
eye movement data to the actual position.

Before calibration, we will denoise the eye movement data first to eliminate anomalies like blinks and some
experimental errors, such as moments when the user looks away from the screen during experiments. Check
Section 4.1 for more details.

Our method is a modified version of ICP, comprising iterative steps of (1) point matching (Section 4.4), (2)
computing weights (Section 4.5), (3) gradient descent (Section 4.6). See Figure 7 for details. During point match-
ing, we pair each gaze coordinate in the eye movement data with its closest text and boundary grid. After that
we compute weight for each point pair based on its unit type. For text grids, the weight is computed using gaze
density and gaze duration prediction. For text grid of punctuation and boundary grids, we set their weight to
contants. Finally, we minimize the total weighted distance between each pair of points to obtain the optimal
affine matrix. After transforming the gaze points with affine matrix, we return to point matching to initiate the
next iteration.
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Fig. 7. Calibration Workflow. (a) Point Matching: We match each gaze point with its closet text grid center and boundary
grid center. (b) ComputingWeights: For each point pair, we calculate its weight. For text grids, the weight is computed using
gaze density and gaze duration prediction. For text grids of punctuation and boundary grids, we set their weight to contants.
(c) Gradient Descent: We compute the optimal affine matrix by minimizing the weighted distance between point pairs. After
transforming the gaze points with affine matrix, we return to point matching to initiate the next iteration.

4.1 Denoise Gaze Data
Event detection has been researched for a long since it’s important for explaining and utilizing eye gaze data.
Traditional algorithms including I-VT [4] for saccades, I-DT [53] for fixations, adaptive algorithms including [43]
and I2MC [24] and machine learning methods [56, 66] have been well developed. Generally, data is classified
into fixations, saccades, return sweeps, regressions, and noise. In this paper, we develop an algorithm inspired
by [43], using both hand-tuned and adaptive parameters to recognize blinks and other noisy data as invalid data,
leaving the rest as valid data fed into the tuning step. The algorithm can be described as follows:

(1) Velocity Computation: To calculate the gaze point velocity, we employ a second-order Savitzky-Golay
filter as detailed in [43]. This filter is applied to the gaze point data 𝐺 to obtain the first-order differential
velocity.

(2) Noise Labeling: Velocity peaks exceeding a predefined noise threshold are identified as noise events. Sub-
sequently, for each noise peak, we detect the onset and offset times based on a preset fixation threshold. To
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mitigate potential issues arising from isolated fixations occurring between two noise sequences, a merging
operation is applied.

(3) Blink Detection: Blinks are characterized by a distinctive pattern of rapid downward and subsequent up-
ward motion, typically occurring within a short time. To identify blinks, we devised two convolution ker-
nels. One kernel is designed to detect blink peaks, while the other ensures that the vertical (y-coordinate)
position remains relatively constant before and after the blink. Any peak in the convolution results is
marked as a blink event. Subsequently, we determine the onset and offset times using a threshold set to
the 95th percentile of the y-values of regular points and the detected blink peaks.

4.2 Input and Output of Calibration
CalibRead employs the data from experiments in Section 3 and Section 5. In this section, we will first introduce
the output of CalibRead. Then, we will describe the detailed composition of the data we get from the Reading
Phase and Manual Calibration Phase (Section 3.2), their usage in calibration and validation, and the derived
data calculated from them.
Affine Matrix 𝐴

Affinematrix𝐴 is a 3×3matrix for affine transformation (1). Multiplying the uncalibrated gaze coordinates by
𝐴 yields the calibrated coordinates.We take translation, rotation, scaling, and shear into consideration.Therefore
we need to optimize 7 parameters (𝑡𝑟𝑎𝑛𝑠𝑥 , 𝑡𝑟𝑎𝑛𝑠𝑦 , 𝜃 , 𝑠𝑐𝑎𝑙𝑒𝑥 , 𝑠𝑐𝑎𝑙𝑒𝑦 , 𝑠ℎ𝑒𝑎𝑟𝑥 , 𝑠ℎ𝑒𝑎𝑟𝑦) to obtain the final affinematrix.

𝐴 =


1 0 𝑡𝑟𝑎𝑛𝑠𝑥
0 1 𝑡𝑟𝑎𝑛𝑠𝑦
0 0 1

 ·

cos𝜃 − sin𝜃 0
sin𝜃 cos𝜃 0
0 0 1

 ·

𝑠𝑐𝑎𝑙𝑒𝑥 1 0

1 𝑠𝑐𝑎𝑙𝑒𝑦 0
0 0 1

 ·


1 𝑠ℎ𝑒𝑎𝑟𝑥 0
𝑠ℎ𝑒𝑎𝑟𝑦 1 0

0 0 1

 (1)

Eye Movement Data during Reading 𝐺
We collected the uncalibrated eye movement data (a sequence of coordinates) of a user during reading a

specific text in Reading Phase, which consists of the coordinates 𝑔 of all gaze points. 𝐺𝑖 represents the eye
movement data for text 𝑖 . The orange points in Figure 7(a) and transparent orange points in Figure 7(c) are
examples of𝑔. After applying the AffineMatrix𝐴 to G, we obtain the calibrated eyemovement data𝐺 ′, consisting
of coordinates𝑔′.The opaque orange points in Figure 7(c) are examples of𝑔′.𝐺 is the primary data for calibration.
Centroids when Focusing on Certain Text Grid 𝐶

We capture the uncalibrated eye movement data (a sequence of coordinates) when the user fixates on the
center of each grid inManual Calibration Phase and then calculate the centroid coordinate 𝑐 of the sequence.
According to Section 3.2, 𝐶 comprises 180 centroids 𝑐 . We define 𝑐′ to represent the same centroid after being
transformed by matrix 𝐴, and 𝐶′ as the set for 𝑐′. These centroids will be used to evaluate the accuracy error of
certain calibration method (details in Section 5).
Coordinates of Text Grid 𝑇

As mentioned in Section 3.1, all texts would be displayed in a grid. The coordinates of text grid 𝑡 refer to the
coordinates of its center. There are in total 180 different text grid coordinates 𝑡 . As shown in Figure 7 (a), the
centers of text grids are marked as black dots.
Coordinates of Boundary Grid 𝑇

As mentioned in Section 3.4.1, we need to add an outer boundary around the text area. Specifically, as illus-
trated in Figure 7 (a), for those text grids at the edges of the text area, we will add an additional layer of boundary
grids close to the outer side of their edges (marked as red cross). The width and height of these boundary grids
are exactly same as text grids. The center of these boundary grids is considered the coordinate of the boundary
grid 𝑡 . For the convenience of subsequent formula representation, we use the same notation 𝑡 for the coordinate
of the boundary grid and the coordinate of the text grid.
Gaze Density 𝐺𝐷

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 4, Article 154. Publication date: December 2024.



154:14 • Liu, et al.

Fig. 8. Computing Gaze Density. (a) Although the uncalibrated gaze points (from eye tracker) may differ from the actual
gaze points (ground truth), their gaze densities are identical. (b) For a certain gaze point, we count the number of adjacent
temporally contiguous gaze points within the selection area as the gaze density. (c) Using this method, we obtain the gaze
density for each gaze point.

As shown in Figure 8, we compute a density value 𝑔𝑑 for each gaze coordinate 𝑔𝑡𝑎𝑟𝑔𝑒𝑡 in𝐺 . It is defined as the
count of temporally contiguous gaze points 𝑔 to 𝑔𝑡𝑎𝑟𝑔𝑒𝑡 . If a gaze point 𝑔 is temporally contiguous, all gaze points
between it and the 𝑔𝑡𝑎𝑟𝑔𝑒𝑡 in time sequence have distances to 𝑔𝑡𝑎𝑟𝑔𝑒𝑡 that are less than a specified threshold. In
other words, if a user looks at one area, then shifts gaze to another area before returning to the original area, the
initial gaze point and the subsequent one upon returning to that area are not considered temporally contiguous.

A higher gaze density indicates the user focuses longer around the gaze point.

4.3 Centroid Alignment
Before the iteration of point matching, computing weights and gradient descent optimization, we will initially
align the centroid of all gaze points 𝐺 and with that of all text grid 𝑇 . Subsequently, based on the bounding
rectangles of the two point sets, we will perform scaling transformations in the x and y directions.

4.4 Point Matching
Point matching aims to identify paired gaze coordinates 𝑔 and text grid coordinates 𝑡 (Figure 9). As mentioned
in Section 3.4.1, when overlaying gaze data of multiple articles, it becomes distinct to differentiate between
rows. Therefore, we first cluster gaze data in the y-direction. After that, each gaze coordinate 𝑔 is assigned a
row number based on its clustered position in the y-direction. In the subsequent point matching process, a gaze
coordinate 𝑔 will only be matched with text grid coordinates 𝑡 of the same text and the same row number.

During point matching, we iterate through all gaze coordinates 𝑔, searching for the nearest text grid 𝑡 and
boundary grid coordinates 𝑡 whose distance to the gaze coordinate is less than a specified threshold, and add
them to the point pair set.
Point Pair 𝑃

Point matching yields multiple point pairs 𝑝 . Each point pair consists 2 coordinates: the gaze coordinate 𝑔,
and the coordinate of corresponding text grid 𝑡 or the coordinate of corresponding boundary grid 𝑡 (Figure 9
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Fig. 9. Point Matching. We match all the gaze points in (a) with their cloest text grids and boundary grids in (b). Point
matching results in multiple point pairs in (c).

(c)). The point pair set 𝑃 comprises point pairs 𝑝 from different texts, with each pair containing gaze and grid
coordinates from the same text.

4.5 Computing Weights

Fig. 10. Gaze Duration Prediction. We collect into a 11 dimensions feature vector of input text (a), encompassing structural,
semantic, and syntactic aspects (b). These features serve as input to a four-layer fully connected neural network (c). The
output of network is the gaze duration prediction for the text.

After point matching, we calculate the weight for each point pair. A positive weight indicates that during
gradient descent, we should reduce the distance between the point pair. The larger the weight, the greater the
influence of this pair on the result when reducing the distance. Conversely, a negative weight indicates that we
should increase the distance between the point pair.
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Fig. 11. Computing Weights for Text Grids. For point pairs consisting of text grid (a), we utilize the gaze density and gaze
duration prediction to compute the weight.

For point pairs consisting of text grids, we utilize a neural network to compute the gaze duration prediction.
This prediction, combined with gaze density, determines the weight. For point pairs involving text grids of
punctuations and boundary grids, weights are set to constants. Therefore, we will focus our discussion on point
pairs consisting of text grids.
Gaze Duration Prediction 𝐺𝐷𝑃

As shown in Figure 10, we construct a neural network composed of 4 hidden layers to predict the gaze duration
𝑔𝑑𝑝 based on a given Chinese character (text grid). A higher gaze duration prediction indicates that user will
focus longer on the specified Chinese character (text grid).

To better illustrate the model input, we will introduce several concepts. When segmenting the sentences in the
row of the given text grid based on punctuation, spaces, or line breaks, we obtain one or more “sentence units.’’
Furthermore, by tokenizing the sentence unit containing the text grid, we acquire one or more “token units.’’ In
the subsequent discussion, “row’’, “column’’, “sentence unit’’ and “token unit’’ all refer to those containing the
specified text grid.

The input of the neural network is a vector that concatenates “row”, “column”, “row_length”, “token_index”,
“token_length”, “sentence_index”, “sentence_length”, “token_embedding”, “sentence_embedding”, “depth_for_full_text”,
“depth_for_sentence_unit”.

“row” represents the row index of the text grid. “column” represents the column index of the text grid.
“row_length” represents the the length (number of text unit) of the row containing text grid. “token_index” rep-
resents the index of text grid within token unit. “token_length” represents the length of token unit containing
text grid. “sentence_index” represents the index of text grid within sentence unit. “sentence_length” represents
the length of sentence unit containing text grid. “token_embedding” and “sentence_embedding” represents the
embedding of token unit and sentence unit respectively. They are both 1536-dimensional vectors and derived
from the GPT text-embedding-ada-002 model. “depth_for_full_text”, “depth_for_sentence_unit” represent the
hierarchical levels of the Chinese character within that text grid in the parse tree. “full_text” indicates that the
constituency parsing was done on the full text, while “sentence_unit” indicates that the constituency parsing
was done on the sentence unit. We use HanLP for constituency parsing [23].

The neural network comprises 4 hidden layers with sizes 64, 128, 256, and 512. We use the Adam optimizer
and mean squared error (MSE) loss function. The network is trained for 300 epochs.
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The neural network was trained using the calibrated eye movement data 𝐺 ′ described in 3.3 and 4.2. The
calibration is achieved by computing 𝐴∗ with centroids when focusing on certain text grid𝐶 and coordinates of
text grids 𝑇 from the Manual Calibration Phase.

Before trainning, all calibrated gaze points will be matched to their cloest text grid. We count the number of
gaze point for each text grid as the ground truth for text duration prediction. The aforementioned features are
used as input, and the ground truth is used as the output to train the neural network. For the data of experiment
in Section 5, we have a total of 40 texts, from which 15 texts are chosen for training and the remaining 25 for
validation. In real-world scenarios, we will pre-train the neural network and directly outputs the corresponding
gaze duration prediction based on the text input.
Weight𝑊

As illustrated in Figure 11, the weight𝑤 of point pair consisting of text grid is computed using the gaze density
𝑔𝑑 of gaze point (eye movement data) and the gaze duration prediction 𝑔𝑑𝑝 (2).

𝑤 =
𝑐1

|𝑐3 × 𝑔𝑑 − 𝑔𝑑𝑝 | + 𝑐2
(2)

Here 𝑐1, 𝑐2, and 𝑐3 are adjustable parameters. In our case, we set 𝑐1 = 5, 𝑐2 = 0.5, 𝑐3 = 3.
Meanwhile, the weight (𝑤 ) of point pair consisting of text grid of punctuation or boundary grid is set to a

constant value (Figure 7(b)).

4.6 Gradient Descent Optimization
The target of optimization is to find the affine matrix𝐴 that minimizes the sum of weighted distances across the
point pair set 𝑃 . The weighted distances is computed by muliplying the weight 𝑤 of each point pair with the
distance between the transformed eye movement data 𝑔′ and the corresponding text grid 𝑡 or boundary grid 𝑡
(3). Ideally the optimal affine matrix𝐴∗ will minimize the distance between the uncalibrated eye movement data
and the ground truth (Figure 7(c)).

𝐴∗ = argmin
𝐴

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = argmin
𝐴

|𝑃 |∑
𝑖=1

(𝐴𝑔𝑖 − 𝑡𝑖 )2 ∗𝑤𝑖 (3)

Due to the iterative nature of our method, which repeatedly performs point matching, computing weights, and
gradient descent, each iteration produces an affinematrix𝐴. Consequently, our method undergoes 100 iterations,
and we average the affine matrices from iterations 20 to 100 to obtain the final result.

5 User study 2: Evaluation on Calibration
The objective of this user study is to collect data to evaluate our method. We aim to answer the following
questions:

(1) How well does CalibReadperform compared to baselines? (Section 5.4)
(2) How does the calibration performance of CalibRead vary with different amount of reading text? (Section

5.5.1)
(3) How do holistic and granular features respectively affect the calibration performance? (Section 5.5.2)
(4) How do various text features influence the calibration performance? (Section 5.5.3)
(5) How does CalibRead compare to other implicit calibration methods? (Section 5.5.4)

5.1 Apparatus
The apparatus used in the experiment is consistent with that mentioned earlier in Section 3.1.
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5.2 Procedure and Participants
We recruited 19 participants (11 males, 8 females, aged 20-29, 𝑀𝑒𝑎𝑛 = 23.37, 𝑆𝐷 = 2.99). None of them partici-
pated the user study 1 in Section 3. We offered a compensation of $15 USD per hour.

The experiment procedure here differs slightly from that described in Section 3.2. Participants were instructed
to sit 60 cm away from the computer monitor and maintain a comfortable posture. Before the experiment begins,
we will no longer calibrate the eye tracker. Experiment were conducted multiple rounds, each only consists of
two phases: reading and manual calibration.
Reading Phase. Participants were instructed to read 40 texts displayed on the screen in random order. They

were asked to read the text naturally and recount the keywords of the text to ensure active engagement in
the experiment. Participants could conclude the reading of each text by pressing the “page down” key on the
keyboard.

Manual Calibration Phase. The calibration process remains consistent with the procedures in Section 3.2.

5.3 Evaluation Metrics: Accuracy Error after Transformation

Fig. 12. Manual Calibrate Result. Before calibration, there is a offset between the text grid centers and the eye movement
centroids when fixating on those centers, as shown in (a), (c). Ideally, after calibration, the text grid centers and the fixation
centroids should match perfectly with each other, as illustrated in (b) by orange points directly overlapping with the black
points, resulting in 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 of 0. However, due to the inherent measurement error of eye tracker, the centroid of
fixation is distributed around the text unit center, as illustrated in (d) by orange points surrounding the black points, resulting
a positive 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 . For the sake of simplicity in illustration, we only depicted part of the text grid centers and their
corresponding fixation centroids.

In the Manual Calibration Phase, we collect 180 centroids for fixating on all grid centers, denoted as 𝐶 .
The set of coordinates for each of the 180 text grid center is denoted as 𝑇 . 𝐶 and 𝑇 form a point pair set 𝑃 . As
shown in Figure 12 (a) and (c), a offset exists between 𝐶 (orange dots) and 𝑇 (black dots) before calibration. We
define the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 (4) as the mean absolute error (MAE) between all calibrated fixation centroids 𝑐′ and
their corresponding text grid centers 𝑡 . 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 is measured in pixels. By using the screen’s resolution
and size mentioned in Section 3.1, we convert 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 to its actual length in centimeters. Then, consid-
ering the user’s distance from the screen is 60 cm (Section 5.2), we convert this length into an angle. A smaller
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 indicates better calibration results, while a larger value suggests poorer calibration performance.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 =
1
|𝐶 |

|𝐶 |∑
𝑖=1

|𝑡𝑖 −𝐴𝑐𝑖 | =
1
|𝐶 |

|𝐶′ |∑
𝑖=1

|𝑡𝑖 − 𝑐′𝑖 | (4)

We use least square method to compute the optimal affine matrix (𝐴∗) from these 180 point pairs. Applying
𝐴∗ to𝐶 results in the transformed fixation centroids𝐶′, as shown in Figure 12 (b) and (d). Noted,𝐶 and𝐶′ would
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only be used for evaluation and for computing the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 . It is never be used in the calibration process
of CalibRead.

In the ideal scenario depicted in Figure 12 (a) and (b), if the eye tracker exhibits no inherent error, each fixation
centroid 𝑐 in𝐶 should perfectly coincide with its corresponding text grid center 𝑡 after calibration, resulting in an
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡 of 0. This is represented by the orange fixation centroids overlapping with the black text
grid centers. However, in reality, as depicted in Figure 12 (c) and (d), each fixation centroid 𝑐 typically exhibits
some deviation from its corresponding text grid center 𝑡 , resulting a positive𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 . This is represented
by the orange fixation centroids deviating from the black text grid centers.

Similar to computing the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡 , the 7-point method uses 7 text grid centers and their corre-
sponding fixation centroids (7 point pairs): top-left, top-center, top-right, center, bottom-left, bottom-center, and
bottom-right.The affine matrix 𝐴7_𝑝𝑜𝑖𝑛𝑡𝑠 is also calculated using least square method, which further gives the
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟7−𝑝𝑜𝑖𝑛𝑡 .

The𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟𝐶𝑎𝑙𝑖𝑏𝑅𝑒𝑎𝑑 is calculated with the affine matrix𝐴 produced with our method from Section 4.6.
During calibration, assuming the user has read 𝑛 texts, we utilize the eye movement data from all these 𝑛 texts
collectively to generate the affine matrix.

5.4 Baseline of Accuracy Error after Transformation

Table 1. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 of different baseline

AccuracyError Type Mean Std Min Max
without-cali 1.21◦ (93.76 px) 0.69◦ (53.41 px) 0.38◦ (29.41 px) 2.64◦ (204.60 px)
inherent 0.20◦ (15.62 px) 0.07◦ (5.29 px) 0.14◦ (11.00 px) 0.41◦ (31.44 px)
7-point 0.38◦ (29.75 px) 0.18◦ (14.16 px) 0.16◦ (12.05 px) 0.93◦ (72.10 px)

centroid-align 1.12◦ (86.84 px) 0.23◦ (18.15 px) 0.63◦ (48.89 px) 1.45◦ (112.24 px)

We present four baselines (see Table 1). 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 are illustrated in two units: degrees and pixels. This
enables convenient comparison with the commonly used eye-tracking calibration precision unit, degrees, while
also facilitating comparisons with the size of a text grid, which is 40 pixels wide and 60 pixels tall.
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟𝑤𝑖𝑡ℎ𝑜𝑢𝑡−𝑐𝑎𝑙𝑖 represents the accuracy error of the uncalibrated eye tracker, as shown in Figure 12

(c).𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡 and𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟7−𝑝𝑜𝑖𝑛𝑡 are defined as described in Section 5.3.𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑−𝑎𝑙𝑖𝑔𝑛
represents the accuracy error after centroid alignment mentioned in Section 4.3.

Upon reviewing the results, we found that one participant consistently had a significantly higher𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟
of 2.58◦ (200 px), far exceeding the others. Further investigation of the experiment videos shows that this par-
ticipant was not fully focused, consistently shifting his body and frequently looking away from the screen. To
maintain the integrity of our analysis, we have decided to omit this participant’s data, resulting in a dataset of
18 participants.

5.5 Evaluation
As mentioned in Section 5.2 and Section 4.5, each of the 18 participants read a total of 40 texts, out of which 15
texts were used to train the neural network, leaving 25 texts for validation.

5.5.1 Evaluation on Text Number

We first evaluate the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 when using different number of text during calibration (blue boxes in
Figure 13). For text numbers ranging from 1 to 24, we randomly selected 𝑡𝑒𝑥𝑡_𝑛𝑢𝑚 texts from the 25 validation

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 4, Article 154. Publication date: December 2024.



154:20 • Liu, et al.

Fig. 13. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 for Different Text Numbers and Weight. The blue boxes represent the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 using text
weight computed from Section 4.5 over different text numbers. The orange boxs represents the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 with text
weight set to constants over different text numbers. The light gray, gray and black dashed horizontal lines represent the
mean value of 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟𝑤𝑖𝑡ℎ𝑜𝑢𝑡−𝑐𝑎𝑙𝑖 , 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟7−𝑝𝑜𝑖𝑛𝑡 , and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡 respectively.

texts for calibration, repeating the selection 3 times (with different selections each time). We then combined the
calibration results of these 3 selections to obtain the final 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 for each 𝑡𝑒𝑥𝑡_𝑛𝑢𝑚.

Analysis of the reading time showed that participants took an average of 17.25 seconds to read each text (
𝑠𝑡𝑑 = 8.82 seconds ). Each text contained an average of 140.43 Chinese characters (𝑠𝑡𝑑 = 18.61) characters.

As shown in Figure 13, the blue boxes represent the𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 for text number 1 to 25.The light gray, gray
and black dashed horizontal lines represent the mean value of 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟𝑤𝑖𝑡ℎ𝑜𝑢𝑡−𝑐𝑎𝑙𝑖 , 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟7−𝑝𝑜𝑖𝑛𝑡 ,
and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡 respectively. Results indicate that when the number of texts is between 1 and 2,
the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 is relatively high, with some samples exhibiting greater deviations than uncalibrated case.
When the number of texts is greater than 3 (51.75 seconds), the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 gradually stabilizes. Further sta-
tistical analysis reveals that with 1-2 texts, CalibRead performs significantly worse than the 7-point method;
with 3-10 texts, there is no significant difference between CalibRead and the 7-point method; and with 11
texts (189.75 seconds) or more, CalibRead performs significantly better than the 7-point method. The mini-
mum 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 for CalibRead occurs with 22 texts (379.5 seconds), achieving an 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 of 0.29◦
(22.32 px).

5.5.2 Evaluation on Text and Boundary

As mentioned in Section 4.5, the weights for text grids are computed with gaze density (𝑔𝑑) and gaze duration
prediction (𝑔𝑑𝑝), and the weights for boundary grids are set to constants. To compare the impact of text weights
and boundary weights in the calibration process, we designed 4 experimental setups: (1) with text weight and
boundary weight (T-B), (2) without text weight and boundary weight (NT-NB), (3) with text weight and without
boundary weight (T-NB), and (4) without text weight and with boundary weight (NT-B). ”With text weight”
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(a) Calibration Result with Boundary Unit (b) Calibration Result without Boundary Unit

Fig. 14. Calibration Result with and without Boundary Unit. Black points are centers of text units, while the orange ones
are gaze points. Red boxes highlight the first and last text unit of each row.

means using the weights calculated from 𝑔𝑑 and 𝑔𝑑𝑝 , and ”without text weight” means setting the text weight
to 1. Similarly, ”with boundary weight” means setting the boundary weight to -0.001, and ”without boundary
weight” means setting the boundary weight to 0. T-B represents the parameter settings in Section 5.5.1.

Table 2. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 for Comparing the Impact of Text and Boundary Weights

AccuracyError Type Mean Std Min Max
T-B 0.29◦ (22.38 px) 0.11◦ (8.34 px) 0.18◦ (13.77 px) 0.59◦ (45.42 px)

NT-NB 0.55◦ (42.19 px) 0.16◦ (12.61 px) 0.27◦ (20.62 px) 0.89◦ (69.14 px)
T-NB 0.57◦ (44.10 px) 0.18◦ (14.29 px) 0.24◦ (18.23 px) 0.88◦ (68.28 px)
NT-B 0.29◦ (22.76 px) 0.11◦ (8.27 px) 0.17◦ (13.22 px) 0.60◦ (46.05 px)

Table 2 shows the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 of four setups when using 25 texts for calibration. RM-ANOVA analysis
indicates that the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟𝑠 for T-B and NT-B are significantly lower than those for NT-NB and T-NB,
with no significant difference between T-B and NT-B. From this, we can conclude that, for 25 texts, the boundary
weight has a significant impact on calibration, whereas text weight does not. This resonates with the findings in
Section ⁇.

Analyzing the calibration results (as shown in Figure 14), we found that the effect of the boundary is mainly
reflected in the constraint of gaze points on the left and right sides. As mentioned in 3.4.1, there are vacancies at
the start and end of each row, in other words, users do not look from the beginning to the end of each row. The
presence of boundaries constrains the distribution of gaze points during calibration. Without them, gaze points
would fully cover the text without preserving the blank spaces at the beginning and end.

Furthermore, we compared the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 of T-B and NT-B for text numbers ranging from 1 to 25. As
shown in Figure 13, the blue boxes and orange boxes represent the𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 for T-B and NT-B, respectively,
across different text numbers. For text numbers ranging from 1 to 24, we randomly selected 𝑡𝑒𝑥𝑡_𝑛𝑢𝑚 texts from
the 25 validation texts for calibration, repeating the selection 3 times (with different selections each time). T-tests
indicate that 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟𝑇−𝐵 is significantly lower than 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟𝑁𝑇−𝐵 only when the text number is
less than or equal to 5. For text numbers greater than 5, there is no significant difference between the two.

5.5.3 Evaluation on Text Features

To further investigate the impact of different text features on gaze duration prediction (𝑔𝑑𝑝), we compared
seven feature combinations against a baseline where all features were active (combination 1). Figure 15 shows the
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 for each combination when the text number ranges from 3 to 5. Table 3 details the relationship
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Fig. 15. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 for Different Text Features.

Table 3. Active Text Features for Different Combination

Text Features 1 2 3 4 5 6 7 8
row ✓ ✓

column ✓ ✓
row_length ✓ ✓
token_index ✓ ✓ ✓
token_length ✓ ✓ ✓

sentence_index ✓ ✓ ✓
sentence_length ✓ ✓ ✓

depth_for_full_text ✓ ✓ ✓
depth_for_sentence_unit ✓ ✓ ✓

token_embedding ✓ ✓ ✓
sentence_embedding ✓ ✓ ✓

between combination indices and the activated text features. Combination 1 represents the parameter settings
in Section 5.5.1 and T-B in Section 5.5.2.

RM-ANOVA analysis indicates that when the text number is 3, combinations 3 and 5 show no significant
difference from combination 1 (p > 0.05); when the text number is 4, combinations 3 and 4 show no significant
difference from combination 1 (p > 0.05); and when the text number is 5, combinations 2, 3, 6, and 7 show no
significant difference from combination 1. Overall, combination 3 consistently shows no significant difference
from combination 1, suggesting that the features corresponding to this combination, namely token_index and
token_length, play a crucial role in the calibration process. These results further explain the findings in Section
3.4.2.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 4, Article 154. Publication date: December 2024.



CalibRead: Unobtrusive Eye Tracking Calibration Through Natural Reading Behavior • 154:23

5.5.4 Empirical Comparison with Other Implicit Method

Table 4. Comparision with Other Implicit Method

Method Error Error
before
Cali-
bration

Error
of
Base-
line

Eye Tracking
Method

Dataset
Size

CalibRead 0.29◦ 1.21◦ 0.39◦ PCCR 19
Wang et al. [62] (2D) 1.0◦ - 0.67◦ PCCR 6
Wang et al. [62] (3D) 1.4◦ - 1.08◦ PCCR 6
Kasprowski et al. [32] (image) 1.55◦ - 1.31◦ PCCR 29
Kasprowski et al. [32] (movie) 3.32◦ - 1.31◦ PCCR 29
Kasprowski et al. [32] (reimplementation) 9.60◦ 1.21◦ 0.39◦ PCCR 29
Hiroe et al. [25] (UNISAL with velocity) 1.58◦ - 1.28◦ 2 RGB cameras 7
Hiroe et al. [25] (DeepGazeII with fixation) 1.61◦ - 1.28◦ 2 RGB cameras 7
Asghari et al. [2] (NL) 3.55◦ 4.90◦ - 1 RGB camera 156

We compared the calibration error of CalibRead with existing methods from four studies in Table 4. The eye
tracking of two studies is based on PCCR, utilizing either an eye tracker [32] or an external infrared light source
camera setup similar to eye tracker [62].The eye tracking of the other two studies is camera-based [2, 25]. All four
studies use self-collected dataset. CalibRead uses a 7-point calibration for baseline. Wang et al. [62], Kasprowski
et al. [32] (image) and Kasprowski et al. [32] (video) use 9-point calibration for baseline. Kasprowski et al. [32]
(reimplementation) uses the same baseline as CalibRead. Hiroe et al. [25] uses 1-point calibration for baseline,
Asghari et al. [2] does not provide any baseline.

Wang et al. [62] (2D) uses regression-based method to create saliency map for eye tracking. Wang et al. [62]
(3D) uses 3D eye model based method for eye tracking. Kasprowski et al. [32] (image) uses image to create
saliency map. Kasprowski et al. [32] (video) uses video to create saliency map. In Kasprowski et al. [32] (reim-
plementation), we reimplemented the matching algorithm from Kasprowski et al. [32] to obtain gaze-text point
pairs, fromwhich we use least square method to compute the transformation matrix. Since existing saliency map
algorithms for images cannot accurately obtain the saliency map for text, we manually set the center of each
text unit to have a saliency of 1, with the rest of the image set to 0. Hiroe et al. [25] lists different𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟s
under the combination of three saliency map generation methods and two eye movement filters. “UNISAL with
velocity” combines UNISAL for saliency map generation and velocity as the eye movement filter, achieves the
lowest 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 among the three saliency map methods under the velocity filter. “DeepGazeII with Fix-
ation” combines DeepGazeII for saliency map generation and fixation as the eye movement filter, achieves the
lowest 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 among the three saliency map methods under the fixation filter. Asghari et al. [2] lists
three tasks for implicit calibration, among which only Numberline (NL) explain the exact content of task.

According to the results, our method outperforms all other implicit calibration method. Furthermore, none of
these implicit calibration methods showed lower error than the baseline (i.e., n-point calibration). We attribute
this to two reasons:

(1) Reading text provides more fixation points (i.e., effective implicit calibration points) compared to watching
videos or images.

(2) The saliency maps for videos or images vary significantly across different algorithms and users, while
reading primarily focuses on the text, allowing for the extraction of a more effective “saliency map”.
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6 Discussion
In this section, we will discuss the limitations of our study and offer some perspectives on future works.

6.1 More Complex Real-world Scenarios
Our method has only been validated in a controlled experimental environment. In these tests, users are seated in
a relatively stable posture in front of a computer, and the text location is also static. However, real-world settings
are considerably more complicated.

Fig. 16. Sudden posture changes while reading causes lead to noticeable shifts in eye movement data. (1) The participant
starts at a position leaning against the chair back. (2) The participant suddenly moves forward and rests her cheek on her
hands. Eye movement data shows a noticeable shift. (3) After a while, the eye movement data goes back to its previous
normal position.

User Posture.Weobserved that sudden posture changes in the userwhile reading, such as suddenmovements
forward or backward (which are common in everyday reading), can lead to noticeable shifts in the eye-tracking
data (Figure 16). These shifts are attributed to the eye tracker’s inherent latency in processing depth changes.
The approach we use now, which involves transferring the eye movement data as a whole, cannot effectively
mitigate the negative impact of such shifts. However, it can be solved by integrating camera data, detecting
posture changes, and dynamically deleting corresponding eye tracking data. Alternatively, signal processing
methods can be employed to filter out such abrupt changes in eye tracking data. Since posture changes usually
occur briefly, they constitute only a small fraction of the total data. Therefore the impact for removing their eye
tracking data is negligible.

Text Factors. In this study, we only tested the effect of fixed text positions at 180 points. However, in real-
world scenarios, factors such as text distribution, attributes (e.g., size, weight, color), category, and context can
all influence users’ reading behavior, thereby affecting the accuracy error of CalibRead.

For example, bold or red text is more likely to attract attention compared to other text of the same size. Text
marked with hashtags may receive more attention, while text enclosed in parentheses might be ignored. Users’
“interest” in the text (as mentioned in 3.4.1) and their current reading task [22] also impact eye movement be-
havior. When reading news or emails, users typically pay more attention to the headline and the first paragraph,
and may stop reading if the content doesn’t meet their expectations. And when reading important emails or
technical documents, users might read certain sentences for multiple times.
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These factors all affect users’ attention distribution. Once the attention distribution provided by our method
does not match the actual attention distribution of users, the calibration effect of CalibRead will significantly
decrease.

The positional layout of various text categories also differs. Text in web or GUI interfaces is usually more
neatly and sparsely arranged on the screen, while text in emails and documents is more concentrated in specific
areas of the screen. When calibrating with text from web or GUI, eye tracking data distribution is relatively
uniform, so the calibration effect at different positions on the screen may be similar. When calibrating with
email text, since email text is usually concentrated on the left side of the screen, the collected eye tracking data
is mostly concentrated on the left side, which may lead to better calibration effects on the left side and poorer
effects on the right side.

On the other hand, text in web and GUI interfaces is shorter, thus the differences in eye movement behavior
between different texts are not obvious, which may make it difficult to match eye movement behavior to specific
objects, resulting in poorer calibration effects. In contrast, longer text in emails and documents results in greater
differences in eye movement behavior, making it easier to match eye movement behavior to specific objects,
leading to better calibration effects.

In summary, the influence of text factors and actual reading scenarios on reading behavior and calibration
effects needs to be further explored in future work.

Interaction with GUI. Text is just one element users encounter in GUIs, which also include images, icons,
videos, and other elements. Previous studies have analyzed potential eye movement patterns when users look at
these elements [29, 31, 46], and some have integrated these patterns directly into gaze estimation [65]. Similarly,
mouse clicks on GUIs can reflect certain eye movement information. For instance, Huang et al. [26] utilized the
consistency between gaze positions and mouse click locations to achieve passive eye tracking calibration.

As another implicit calibration method, CalibReadshould be integrated with these approaches to support per-
manent and implicit eye tracker calibration while a user is interacting with a laptop in a realistic usage context.

However, several challenges still exist. First, in real-world scenarios, users’ gaze shifts constantly among im-
ages, icons, and texts. This necessitates the development of either a unified model capable of analyzing gaze
attention across different elements, or a model that can distinguish eye movement patterns for different ele-
ments, which, to our knowledge, do not yet exist.

Second, during daily use, interactions with different GUI elements are often closely linked. For example, se-
lecting multiple graphic elements in PowerPoint is likely to be followed by a click on the alignment button.
Therefore, future work could focus on utilizing the semantic and temporal connections between interactions
with different elements, thereby enhancing the overall implicit calibration system.

6.2 More Accurate Semantic Prediction
The variance in gaze duration for individual Chinese characters within a sentence is significant, as discussed in
Section 3.5. Our approach in Section 4 for gaze duration prediction was to train a basic neural network with-
out personalization. Figure 17 illustrates the model’s performance, with green “x”markers for individual gaze
duration data, green lines for averages, and red lines for predictions gaze duration. Similar to the description in
Section 3.4.2, for short sentences, the model’s predictions are close to actual averages, but there’s a deviation
with longer sentences. While large models like GPT have shown promise in diverse fields [8, 9, 35, 37, 45, 49, 55],
our study employed a simple network with GPT-provided embeddings. Harnessing the full potential of such
models for more precise and personalized predictions is a key area for future enhancement.
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(a) An example where the gaze duration predic-
tion is close to the mean of actual gaze duration.

(b) An example where the gaze duration predic-
tion deviates from the mean of actual gaze dura-
tion.

Fig. 17. Examples of gaze duration prediction using neural network. The green “x” marker in the figure represent gaze
duration data from different participants, and the green lines connect the average values. The red lines connect the gaze
duration prediction. The bottom of each figure displays the Chinese characters of this sentence and its English translation.

6.3 Incremental Learning
For human learning processes, knowledge accumulation involves gradually updating existing knowledge through
the utilization of new data, a step-by-step progression. However, for our algorithm, the accumulation of data
does not transform gradually into knowledge; rather, it is a one-time process of summarizing knowledge. Cur-
rently, our algorithm can only derive the calibration parameters through point matching and gradient descent
optimization after accumulating a substantial amount of data. This approach tends to result in computationally
intensive updates for parameters, leading to lower efficiency. We believe that, as an avenue for future work,
enhancing the algorithm to extract less accurate calibration parameters from a small amount of data and pro-
gressively refining these parameters with subsequent data could be a more sophisticated approach.

6.4 Additional Application Scenarios
The current input of our model is the eye movement signals from uncalibrated eye trackers, which are not com-
monly available devices. Extensive research [10, 27, 44] has already been conducted on predicting eye movement
positions using smartphones’ RGB cameras. A persistent issue with these technologies is that once the user’s
environment changes, such as alterations in lighting or background, or if the user’s posture changes, the predic-
tions for eye movements become significantly skewed. As a result, there is often a strong need for recalibration
in these methods. We believe that our approach has significant application value in such scenarios. Through
implicit calibration, we can continuously and effectively capture eye movement data while users are interacting
with smartphones, thereby opening new possibilities for user behavior analysis and interaction design. However,
there are challenges involved: text on a smartphone screen is significantly smaller than that on a computer, and
it is uncertain whether the front-facing RGB camera can provide the level of precision required for text-level eye
movement predictions.

7 Conclusion
In this study, we introduce CalibRead, a non-intrusive approach for eye tracker calibration using natural read-
ing behaviors. We identify focus and ignore zones through a user study and model these behaviors to obtain
calibration parameters. Our method achieves an average accuracy error of 5.84mm. A minimum of 9 texts is
required to surpass the accuracy error of 7-point method. Features related to tokens and positional information
contributes most to decreasing the accuracy error of calibration. On the other hand, semantic embeddings from
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GPT impose negligible or even negative impact, suggesting future work on personalized reading predictions and
wider device adaptation.
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